Asymmetric Oxidative Cyclization of o-Phenolic Oxime-Esters: First Synthesis of Enantiomerically Enriched Spiroisoxazoline Methyl Esters

Masatoshi Murakata, Masafumi Tamura, and Osamu Hoshino*
Faculty of Pharmaceutical Sciences, Science University of Tokyo, Shinjuku-ku, Tokyo 162, J apan

Received J anuary 15, 1997*

Abstract

A new method for the synthesis of enantiomerically enriched cyclohexadienone spiroisoxazoline (-)-2a has been described. Asymmetric intramolecular oxidative cyclization of theo-phenolic oximeester $\mathbf{1 c}$ using a novel optically activetertiary alcohol (-)-3 as a chiral auxiliary proceeded smoothly to afford cyclohexadienone spiroisoxazoline $\mathbf{2 c}$ in 83% yield. Opitcally active tertiary alcohol (-)-3 was synthesizied from racemic (1S*, $8 R^{*}, 9 R^{*}, 10 R^{*}$)-8-phenyl-1-decalol (4) by optical resolution. Removal of the chiral auxiliary in $\mathbf{2 c}$ with $\mathrm{CF}_{3} \mathrm{COOH}$ followed by methylation gave methyl ester (-)-2a in 74% ee (71% chemical yield) having S-configuration. The absolute configuration of $\mathbf{2 a}$ was determined by the synthesis of the marine natural product (+)-aerothionin.

Introduction

The isolation and structure determination of several bromotyrosine-derived natural marine metabolites containing the spi rocyclohexadienylisoxazoline moiety ${ }^{1}$ have been reported. The oxidative cyclization of o-phenolic oxime-acid derivatives serves a powerful method ${ }^{2}$ for the construction of the spiroisoxazol ine ring system in these natural products. Successful oxidations employ manganese(III) tris(acetylacetonate), ${ }^{3}$ 2,4,4,6-tetrabromocyclo-hexa-2,5-dienone, ${ }^{2 c, d}$ thallium(III) nitrate, 2, e, thallium(III) trifluoroacetate $\left[\mathrm{TI}\left(\mathrm{OCOCF}_{3}\right)_{3}\right],{ }^{2 f, 9}$ and anodic oxidation conditions. ${ }^{2 e}$ Recently, hypervalent iodine compounds were found to be very efficient agents for the oxidation of a variety of phenolic oximes to give the corresponding spiroisoxazolines under mild conditions. ${ }^{2 h-j}$

The racemic syntheses of aerothionin, homoaerothionin, and aerophobin-1, which are isolated from sponges of Aplysia aerophoba, Aplysia fistularis, and Verongia thiona, by the oxidative cyclization of o-phenolic oximeester la using $\mathrm{Tl}\left(\mathrm{OCOCF}_{3}\right)_{3}$ as oxidant have been reported (Scheme 1), ${ }^{2 g, 4}$ showing that spiroisoxazoline methyl ester 2a is a key compound in the synthesis of these marine natural products. However, asymmetric

[^0]
$(-)-3$

1 C

Figure 1.

Scheme 1

synthesis of these natural products is not known. ${ }^{3}$ Therefore, we planned to develop a method for the preparation of optically active $\mathbf{2 a}$, which should be useful for the asymmetric synthesis of these compounds.

Recently, the asymmetric oxidative cyclization of ophenolic oxime-ester $\mathbf{1 b}$ using iodosylbenzene ($\mathrm{PhIO} \mathrm{)} \mathrm{to}$ give an optically active spiroisoxazoline $\mathbf{2 b}$ has been achieved in our laboratory (Scheme 1). ${ }^{\text {i }}$ However, the 8-phenylmenthyl ester in $\mathbf{2 b}$ could not be hydrolyzed under various conditions, including treatment of $\mathbf{2 b}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}\left(0^{\circ} \mathrm{C}\right)$, aqueous HCl (reflux), $\mathrm{TfOH}\left(0^{\circ} \mathrm{C}\right),{ }^{5}$

[^1]
Scheme 2

TMSI-MeCN (reflux), ${ }^{6}$ or $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2} \mathrm{O}-\mathrm{Et}_{2} \mathrm{O}$ (rt to reflux). ${ }^{7}$ All of these reactions gave intractable mixtures, perhaps as a result of the instability of the cyclohexadienone spiroisoxazoline moiety under these vigorous conditions. ${ }^{8}$ These results suggest that chiral auxiliaries which require hydrolytic conditions for their cleavage are unsuitable for the synthesis of $\mathbf{2 a}$. F or the purpose of the synthesis of optically active $\mathbf{2 a}$, it seemed necessary to prepare a new chiral auxiliary. Therefore, we designed the tertiary alcohol (-)-3 as an auxiliary, because it was expected to be easily removed by acid-assisted elimination under mild conditions. The present paper deals with the preparation of optically active $\mathbf{3}$ and the synthesis of enantiomerically enriched spiroisoxazoline methyl esters (-)-2a.

Results and Discussion

The synthesis of optically active tertiary alcohol (-)-3 $\left\{[\alpha]^{31}{ }_{D}-19.8\left(\mathrm{c} 1.32, \mathrm{CHCl}_{3}\right)\right\}$ is shown in Scheme 2. The key intermediate compound was optically active exo

[^2]Scheme 3
7

8

olefin 8, which was prepared by olefination of enantiomerically pure ketone 7.
(8R,9R,10R)-8-Phenyl-1-decalone (7) $\left\{[\alpha]^{28}{ }_{D}+41.3\right.$ (c $\left.\left.0.47, \mathrm{CHCl}_{3}\right)\right\}$ was obtained in four steps from racemic (1S*,8R*,9R*,10R*)-8-phenyl-1-decalol (4). ${ }^{9}$ Treatment of 4 with phthalic anhydride in pyridine under reflux for 4 h gave the ester-acid 5 in 74% yield. Amidation with (S)-1-phenylethylamine provided diastereomers 6a (35\%) and $\mathbf{6 b}(41 \%)$, which were separated by silica gel column chromatography. Hydrolysis of 6a gave enantiomerically pure (-)-4 in 89% yield, J ones oxidation of which produced optically active ketone 7 in 91% yield. The absolute configuration of $\mathbf{7}$ was determined to be 8R,9R,10R by circular dichroism measurement $\left\{[\theta]_{295}\right.$ +6847 (c 0.049, MeOH)\}. ${ }^{10}$

With enantiomerically pure ketone 7 in hand, we focussed our attention on the direct introduction of a methyl group into 7. However, as shown in Scheme 3, methyl group addition to the carbonyl group of $\mathbf{7}$ by $\mathrm{Me}_{3} \mathrm{Al}$ or MeLi gave the undesired axial alcohol 10 predominantly. The stereochemistry of $\mathbf{1 0}$ was deduced by an examination of the ${ }^{1} \mathrm{H}$ NMR spectrum: a peak due to a methyl group appeared at $\delta 0.46$ as a result of the anisotropic effect of the benzene ring at the C8-position. On the other hand, the reaction of 8 (prepared from 7 using the Wittig reaction) with m-CPBA gave epoxide 11 in 87% yield, reduction of which again gave the axial alcohol 10. This result showed the epoxide to be α-oriented. These findings suggest that the π-facial selectivity of an electrophile (m-CPBA) to olefin 8 was α, whereas nucleophiles ($\mathrm{Me} \mathrm{e}_{3} \mathrm{Al}$ and MeLi) approach the ketone 7 from the β-face.

On the basis of the results mentioned above, in order to obtain the equatorial alcohol $(-)-3$, the β-epoxide was prepared via the bromohydrin obtained from 8 (Scheme 2). The Wittig ol efination of 7 provided 8 in 90% yield. Treatment of 8 with N -bromosuccimide in DME $-\mathrm{H}_{2} \mathrm{O}$ followed by ring closure afforded 9 in 67% yield. As expected, the equatorial alcohol (-)-3 was obtained in 79% yield by reduction of 9 with LiAlH_{4}. The stereochemistry of the methyl group in (-)-3 was determined on the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum, which displayed a methyl singlet at $\delta 1.22$.

[^3]
Scheme 4

o-Phenolic oxime-ester 1c was easily prepared in three steps from 2-[(benzyloxy)imino]-3-[2-(benzyloxy)-3,5-di-bromo-4-methoxyphenyl]propionic acid (12) ${ }^{\text {1a }}$ (Scheme 4). Treatment of $\mathbf{1 2}$ with p-nitrophenol afforded a p-nitrophenyl ester $\mathbf{1 3}$ in 91% yield, and transesterification of 13 with lithiated (-)-3 produced 1-methyl-1-decalyl ester 14 in 85\% yield. Hydrogenolysis of 14 gave o-phenolic oxime-ester 1c $\left\{[\alpha]^{30} \mathrm{D}+38.1\right.$ (c 1.13, $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$ in 91% yield.

As shown in Scheme 5, the reaction of o-phenolic oxime-ester 1c with PhlO in the presence of camphorsulfonic acid (CSA) ${ }^{2 i}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ proceeded smoothly to afford spiroisoxazoline 2c in 83\% yield. The $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum showed insufficiently resolved signals to enable accurate measurement of the diastereomeric excess (de). Therefore, the de (~ 70 to 80%) was estimated on the basis of the relatively resolved methylene proton signals of the isoxazoline ring.

The chiral auxiliary in 2c, as well as the phenylmenthyloxy group in $\mathbf{2 b}$, could not be cleaved successfully by acid- or base-catalyzed hydrolysis. Therefore, we tried to remove the chiral auxiliary under acidic conditions. As expected, removal of the chiral auxiliary of spiroisoxazoline 2c was achieved by treatment with $\mathrm{CF}_{3} \mathrm{COOH}$ at rt for 1 h . Methylation using DCC and MeOH gave methyl ester (-)-2a $\left\{[\alpha]^{29}\right.$ D -56.4 (c 1.0, benzene) $\}$ in 74% ee (71% chemi cal yield) having the S-configuration. The enantiomeric excess (ee) was determined by HPLC using a chiral column. It is reasonable to assume that epimerization of $\mathbf{2 c}$ and racemization of $\mathbf{2 a}$ did not occur in removal of the chiral auxiliary and at the methylation stage, because the degree of the ee of $(-)$ - 2 a was in the range of the de of $\mathbf{2 c}$ (~ 70 to 80% de). Furthermore, it was found that optically active methyl ester $\mathbf{2 a}$ was stable enough to keep its optical purity for at least 1 month at $0{ }^{\circ} \mathrm{C}$. To the best of our knowledge, this is the first example of a synthesis of enantiomerically enriched cyclohexadienone spiroisoxazoline methyl esters. On the other hand, the chiral auxiliary in $\mathbf{2 c}$ was converted into a mixture of products by acid-assisted elimination at the cleavage stage. Purification of this mixture gave exo olefin 8 in 52% yield, the spectral data and the specific rotation of which were identical with those for the exo olefin obtained by olefination (Scheme 2) of 7. Thus, at

Scheme 5

2c

Scheme 6

A

least a partial recycling of the chiral auxiliary (-)-3 was found to be possible. Other products could not be characterized, because they were inseparable by chromatography (silica gel, hexane).

A possible asymmetric induction mechanism is depicted in Scheme 6. Two hypervalent iodine complexes \mathbf{A} and \mathbf{B} would be generated in the oxidation of $\mathbf{1 c}$ with CSA-PhIO. Complex A would suffer from steric repulsion between the phenyl group of the chiral auxiliary and the ligand of the hypervalent iodine reagent. The apparently more stable complex B would lead to isomer 2c, the observed major product.

F ollowing recrystallization, the absolute configuration of $(-)-\mathbf{2 a}\left(84 \%\right.$ ee) ${ }^{11}$ was determined by the synthesis of the marine natural product (+)-aerothionin, ${ }^{12}$ as shown in Scheme 7. According to Yamamura's method (for racemic aerothionin), ${ }^{2 g}$ optically active spiroisoxazoline methyl ester (-)-2a was reduced with $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ to give cyclohexadienylisoxazoline (+)-15, amidation of which with butanediamine afforded (+)-aerothionin $\left\{[\alpha]^{28}{ }_{D}\right.$

[^4]
Scheme 7

+166 (c, 0.26, MeOH)\} having S-configuration. Spectral data of the synthetic sample were identical to those reported in the literature. ${ }^{1 \mathrm{a}, 2 \mathrm{~g}}$

In conclusion, we have developed a method for the synthesis of enantiomerically enriched spiroisoxazolines by use of the novel optically active tertiary alcohol (-)-3 as a chiral auxiliary. The optically active spiroisoxazoline methyl ester 2a should be useful as a synthon for the synthesis of other bromotyrosine-derived natural marine metabolites.

Experimental Section

General. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR (270 MHz or 500 MHz) and ${ }^{13} \mathrm{C} \mathrm{NMR}(67.5 \mathrm{MHz}$) spectra were recorded in CDCl_{3} solution usingTMS as an internal standard, unless otherwise noted. Column chromatography was performed on silica gel.
(1S*,8R*,9R*,10R*)-8-Phenyl-1-decalyl Hydrogen Phthalate (5). A solution of racemic (1S*, $8 \mathrm{R}^{*}, 9 \mathrm{R}^{*}, 10 \mathrm{R}^{*}$)-8-phenyl-1-decalol (4) ${ }^{9}(2.4 \mathrm{~g}, 10.4 \mathrm{mmol})$ and phthalic anhydride ($1.5 \mathrm{~g}, 10.4 \mathrm{mmol}$) in pyridine (15 mL) was refluxed for 4 h . The reaction mixture was cool ed to $0^{\circ} \mathrm{C}$ and then diluted with $10 \% \mathrm{HCl}$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times$ 3). The organic extracts were washed with saturated NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure to afford 5 ($2.9 \mathrm{~g}, 74 \%$) as col orless crystals: $\mathrm{mp} 139-143{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-petroleum ether); ${ }^{1} \mathrm{H}$ NMR $\delta 1.15-$ $1.85(13 \mathrm{H}, \mathrm{m}), 1.89-2.15(1 \mathrm{H}, \mathrm{m}), 2.36-2.44(1 \mathrm{H} \mathrm{m}), 4.96(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=4.6,10.2 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 6.85-7.05(5 \mathrm{H}$, $\mathrm{m}), 7.24-7.47(2 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2,7.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 23.8,26.2,32.4,33.6,33.7,38.0,42.1,49.6,50.2,79.0,124.8$, $126.8,128.0,129.4,130.2,130.4,130.5,131.0,131.6,147.5$, 167.0, 171.8; IR (KBr) 2940, 2890, 1720, $1600 \mathrm{~cm}^{-1}$; MS m/ z $378\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4}$ 378.1831, found 378.1831. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4}$: $\mathrm{C}, 76.16 ; \mathrm{H}, 6.93$. Found: $\mathrm{C}, 75.93$; H, 6.82 .
(1S,8R,9R,10R)- and (1R,8S,9S,10S)-8-Phenyl-1-decalyl (S)-[(1-Phenylethyl)carbamoyl]phthalate (6a and 6b).To a solution of $5(2.5 \mathrm{~g}, 6.6 \mathrm{mmol})$ and (S)-1-phenylethylamine ($0.8 \mathrm{~g}, 6.6 \mathrm{mmol}$) in DMF (16 mL) were added diethyl cyanophosphonate ($1.1 \mathrm{~g}, 6.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~g}, 6.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After being stirred at r t for 5 h , the reaction mixture was diluted with water (40 mL). The product was taken up in AcOEt (40 mL)-benzene (20 mL). The organic layer was washed successively with water, saturated NaHCO_{3}, and saturated NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography (hexane:AcOEt =2:1) to afford 6a (1.1 g , the second eluate, 35%) and $\mathbf{6 b}$ (1.3 g , the first eluate, 41\%): 6a: mp 148-150 ${ }^{\circ} \mathrm{C}$ (AcOEt); $[\alpha]^{29}{ }_{\mathrm{D}}+7.1$ (c, 1.06, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.05-1.78(13 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6$ $\mathrm{Hz}), 1.89-1.94(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.3,11.1 \mathrm{~Hz}), 4.85$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4.5,10.4 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{m}), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6$ $\mathrm{Hz}), 6.42(1 \mathrm{H}, \mathrm{m}), 6.67-6.76(4 \mathrm{H}, \mathrm{m}), 7.10-7.52(9 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.1,23.7,26.2,32.5,33.6\left(\mathrm{CH}_{2} \times 2\right), 37.5,41.9,49.4$, $49.6,50.1,77.8,124.6,126.7,126.9,127.0,127.5,127.7,128.4$, 128.6, 128.9, 130.7, 131.2, 138.0, 143.2, 147.8, 165.3, 168.6; IR (KBr) 3350, 2950, 2900, 1730, 1660, 1545, $1470 \mathrm{~cm}^{-1}$; MS $\mathrm{m} / \mathrm{z} 481\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{3} 481.2615$, found
481.2633. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{3}: \mathrm{C}, 79.80 ; \mathrm{H}, 7.33 ; \mathrm{N}$, 2.91. Found: C, $79.64 ; \mathrm{H}, 7.38 ; \mathrm{N}, 2.82$. 6b: $\mathrm{mp} 152-154{ }^{\circ} \mathrm{C}$ (AcOEt); $[\alpha]^{30}{ }_{\mathrm{D}}-75.7$ (c, 1.03, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 1.11-2.04$ $(13 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 1.85-1.98(1 \mathrm{H}, \mathrm{m}), 2.30$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.5,10.9 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4.4,10.3 \mathrm{~Hz}), 5.31$ $(1 \mathrm{H}, \mathrm{m}), 5.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{m}), 6.76(2 \mathrm{H}, \mathrm{m})$, $6.91(2 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{m}), 7.13-7.48(8 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.4$, 23.8, 26.2, 32.8, 33.7 ($\left.\mathrm{CH}_{2} \times 2\right), 37.7,42.0,49.1,49.3,50.7$, 77.9, 124.6, 126.6, 126.9, 127.2, 127.5, 127.6, 128.3, 128.4, 128.7, 130.5, 131.2, 138.0, 142.9, 147.8, 165.1, 168.5; IR (KBr) 3420, 3070, 2960, 2900, 1740, 1660, 1520, $1460 \mathrm{~cm}^{-1}$; MS m/ z $481\left(\mathrm{M}^{+}\right)$; HRMS cal cd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{3} 481.2615$, found 481.2607. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{3}$: C, 79.80; H, 7.33; N, 2.91. Found: C, 79.68; H, 7.34; N, 2.84.
(1S,8R ,9R,10R)-8-Phenyl-1-decalol [(-)-4]. A solution of amide $6 \mathbf{6}$ ($800 \mathrm{mg}, 1.66 \mathrm{mmol}$) in $20 \% \mathrm{KOH}(4 \mathrm{~mL})$ and EtOH (15 mL) was refluxed for 7 h . The solvent was removed under reduced pressure. After addition of water (50 mL), the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The organic extracts were washed with saturated NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to afford (-)-4 ($340 \mathrm{mg}, 89 \%$): $\mathrm{mp} 61-63{ }^{\circ} \mathrm{C} ;[\alpha]^{30} \mathrm{D}-6.9\left(\mathrm{c}, 1.07, \mathrm{CHCl}_{3}\right.$); ${ }^{1 \mathrm{H}}$ NMR $\delta 1.0-1.86(14 \mathrm{H}, \mathrm{m}), 2.39(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.1,11.1 \mathrm{~Hz}$), $3.46(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4.6,9.3 \mathrm{~Hz}), 7.18-7.35(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR δ 23.8, 26.4, $33.8\left(\mathrm{CH}_{2} \times 2\right), 35.0,37.0,41.8,50.4,54.7,75.6$, 126.9, 127.5, 129.2, 147.0; IR (KBr) 3590, 3020, 2925, 2875, $1610 \mathrm{~cm}^{-1} ;$ MS m/z $230\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$ 230.1670, found 230.1673.
($8 \mathrm{R}, 9 \mathrm{R}, 10 \mathrm{R}$)-8-Phenyl-1-decalone (7). To a solution of alcohol (-)-4 ($340 \mathrm{mg}, 1.48 \mathrm{mmol}$) in acetone (4 mL) was added dropwise J ones reagent ($1.1 \mathrm{~g}, 6.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, until the solution turned brown. The reaction mixture was stirred for 1 h . The mixture was quenched with i-PrOH and filtered. After addition of water (4 mL), the filtrate was extracted with AcOEt ($50 \mathrm{~mL} \times 3$). The organic extracts were washed with saturated NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure to afford 7 ($308 \mathrm{mg}, 91 \%$): $\mathrm{mp} \mathrm{121-123}{ }^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{28} \mathrm{D}+41.3$ (c, 0.47, CHCl_{3}); $[\theta]_{295}$ +6847 (c 0.049, MeOH); ${ }^{1} \mathrm{H}$ NMR $\delta 1.22-2.38(13 \mathrm{H}, \mathrm{m}), 2.60$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=4.3,11.0 \mathrm{~Hz}), 7.09-7.27$ (5H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 25.7,27.9,33.7,34.1,35.6,42.6,42.9,46.2$, 60.0, 125.7, 127.2, 128.1, 146.6, 211.6; IR (KBr) 3400, 2950, $1710 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 228\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$ 228.1514, found 228.1511. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 84.16$; H, 8.83. Found: C, 84.15; H, 9.06.
(8R,9R,10R)-8-Phenyl-1-methylenedecalin (8). Under argon atmosphere, a suspension of K Ot-Bu ($281 \mathrm{mg}, 2.5 \mathrm{mmol}$) and methyltriphenyl phosphonium bromide ($893 \mathrm{mg}, 2.5 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was stirred at rt for 1 h . To this mixture was added a solution of $7(280 \mathrm{mg}, 1.23 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 8 h . After addition of water, this solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times 3)$. The organic extracts were washed with saturated NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography (benzene) followed by bulb-to-bulb distillation to afford 8 ($250 \mathrm{mg}, 90 \%$) as an oil: bp $130{ }^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$; $[\alpha]^{28} \mathrm{D}+29.0\left(\mathrm{c}, 1.67, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.09-2.24(14 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.6,11.2 \mathrm{~Hz})$, 4.29, 4.57 (each $1 \mathrm{H}, \mathrm{s}), 7.09-7.38(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 26.3$, 29.1, 34.7, 35.1, 38.3, 38.4, 45.1, 45.7, 50.8, 107.7, 125.4, 127.0, 128.3, 147.5, 151.0; IR (CHCl_{3}): 3350, 2900, 2840, $1610 \mathrm{~cm}^{-1}$; MS m/ z $226\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22}$ 226.1721, found 226.1726.
(1S,8R ,9R,10R)-8-Phenyl-1-methylenedecalin Oxide (9). To a solution of $8(250 \mathrm{mg}, 1.11 \mathrm{mmol})$ in DME (3 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added N -bromosuccinimide ($229 \mathrm{mg}, 1.29$ mmol), and the mixture was stirred at rt for 3 h . After addition of water, the product was taken up in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL} \times$ 3). The organic layer was washed with saturated NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the product thus obtained was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$. To this solution was added a solution of KOH $(600 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 10 min . After addition of water, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The organic extracts
were washed with saturated NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography (benzene) to afford 9 ($180 \mathrm{mg}, 67 \%$): mp 104-109 ${ }^{\circ} \mathrm{C} ;[\alpha]^{30} \mathrm{D}-21.6$ (c, 1.01, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 1.10-2.20(15 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6$ $\mathrm{Hz}), 2.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,4.6 \mathrm{~Hz}), 7.07-7.26(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.0,26.1,34.0,34.3,36.9,38.2,42.6,44.8,47.8,48.4$, 61.7, 125.2, 126.0, 127.9, 147.5; IR (KBr): 3450, 3050, 2960, 2900, 1510, 1230, $750 \mathrm{~cm}^{-1}$; MS m/z 242 (M+); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}$ 242.1669, found 242.1669.
(1S,8R,9R,10R)-1-Methyl-8-phenyl-1-decalol (3). To a suspension of $\mathrm{LiAlH}_{4}(216 \mathrm{mg}, 5.68 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added a solution of 9 ($437 \mathrm{mg}, 1.8 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was refluxed for 1 h . After successive addition of water (0.21 mL), $15 \% \mathrm{NaOH}(0.21 \mathrm{~mL})$, and water $(0.63 \mathrm{~mL})$, the mixture was filtered and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solvent was removed under reduced pressure, and the crude product was purified by flash column chromatography (hexane: AcOEt $=10: 1$) followed by bulb-to-bulb distillation to afford 3 ($367.7 \mathrm{mg}, 84 \%$) as an oil: bp $220-235{ }^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$; $[\alpha]^{31}{ }_{\mathrm{D}}$ -19.8 (c, 1.32, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 1.22(3 \mathrm{H}, \mathrm{s}), 0.88-1.79$ (14 H , $\mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.3,11.2 \mathrm{~Hz}), 7.16-7.34(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\delta 22.7,22.8,26.3,34.7\left(\mathrm{CH}_{2} \times 2\right), 37.7,40.2,42.0,46.4,56.6$, $74.2,126.6,128.0,129.0,146.5 ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3600,2950,2860$, $1610 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 244\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$ 244.1825, found 244.1818.
(1R*,8R*,9R*,10R*)-1-Methyl-8-phenyl-1-decalol (10). This compound was prepared from racemic ketone 7 using Me3 AI $(\operatorname{method} \mathrm{A})$ or MeLi $(\operatorname{method} B)$. Method A: Under argon atmosphere, to a solution of racemic ketone $\mathbf{7}(50 \mathrm{mg}$, 0.22 mmol) in toluene (2 mL) was added a solution of $\mathrm{Me}_{3} \mathrm{Al}$ in toluene ($0.5 \mathrm{~mL}, 1 \mathrm{mmol}, 2 \mathrm{M}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for 30 min and refluxed for 12 h . After the mixture was cooled to $0^{\circ} \mathrm{C}, 0.5 \mathrm{~N} \mathrm{NaOH}$ was added. The product was taken up in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic layer was washed with saturated NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$: AcOEt $=30: 1$) to afford $\mathbf{1 0}(43.5 \mathrm{mg}, 81 \%)$ as an oil. Method B: Under argon atmosphere, to a solution of racemic ketone $7(50 \mathrm{mg}, 0.22 \mathrm{mmol})$ in THF (2 mL) was added a solution of MeLi in $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}, 0.99 \mathrm{M})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. Workup as above gave 10 ($47.8 \mathrm{mg}, 89 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.46(3 \mathrm{H}, \mathrm{s}), 1.01-1.84(14 \mathrm{H}, \mathrm{m})$), 2.60$2.74(1 \mathrm{H}, \mathrm{m}), 7.1-7.30(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\delta 21.6,26.2,32.3$, $34.8\left(\mathrm{CH}_{2} \times 2\right), 38.1,39.0,43.1,45.5,54.2,72.4,125.6,127.7$, 128.3, 149.3; IR (CHCl_{3}) 3350, 2900, 2850, $1610 \mathrm{~cm}^{-1}$; MS m/ z $244\left(\mathrm{M}^{+}\right)$; HRMS cal cd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}$ 244.1825, found 244.1835.
(1R*,8R*,9R*,10R*)-8-Phenyl-1-methylenedecalin Oxide (11). This compound was prepared from racemic methylenedecalin 8. To a solution of racemic methylenedecalin 8 $(80.5 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added 80% m-CPBA ($98.4 \mathrm{mg}, 0.57 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After addition of $\mathrm{Ca}(\mathrm{OH})_{2}(120 \mathrm{mg})$, the resulting mixture was stirred at rt for 1 h , and then the mixture was filtered. After the filtrate was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer was washed with saturated NaHCO_{3} and saturated NaCl , and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography (benzene) to afford 11 ($75.7 \mathrm{mg}, 87 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.03-2.05(14 \mathrm{H}, \mathrm{m}), 2.14$, 2.39 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}$), 2.32-2.42 ($1 \mathrm{H}, \mathrm{m}$), 7.12-7.36 ($5 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR $\delta 23.7,25.8,34.2,34.6,36.2,39.0,40.0,42.0$, $46.2,55.2,60.5,125.6,126.7,128.7,148.3 ; \mathrm{IR}(\mathrm{KBr}): 3400$, 3050, 2950, 2900, 1510, 1230, $750 \mathrm{~cm}^{-1}$; MS m/ z $242\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}$ 242.1669, found 242.1667. In a fashion similar to that described for $\mathbf{3}$, this compound $\mathbf{1 1}$ was subjected to the same reduction (77\%). The spectral properties of the product were identical with those obtained for axial alcohol 10.
p-Nitrophenyl 2-[(Benzyloxy)imino]-3-[2-(benzyloxy)-3,5-di bromo-4-methoxyphenyl]propionate (13). To a soIution of benzyloxime-acid $12^{1 \mathrm{a}}(13 \mathrm{~g}, 23.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (130 mL) were added DCC ($5.24 \mathrm{~g}, 25.4 \mathrm{mmol}$) and p nitrophenol ($3.9 \mathrm{~g}, 28.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was
stirred at $0^{\circ} \mathrm{C}$ for 30 min . After the mixture was stirred at rt for 4 h , the sol vent was removed under reduced pressure. After being diluted with AcOEt, the mixture was filtered, and the filtrate was washed with saturated NaHCO_{3} and saturated NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography (hexane:AcOEt $=3: 2$) to afford 13 ($14.3 \mathrm{~g}, 91 \%$): $\mathrm{mp} 132-134^{\circ} \mathrm{C}\left(\mathrm{AcOEt}-\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.89$ $(3 \mathrm{H}, \mathrm{s}), 3.95(2 \mathrm{H}, \mathrm{s}), 4.95(1 \mathrm{H}, \mathrm{s}), 5.29(2 \mathrm{H}, \mathrm{s}), 7.07(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $9.2 \mathrm{~Hz}), 7.25-7.37(11 \mathrm{H}, \mathrm{m}), 8.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 27.0,60.7,74.6,78.6,112.8,114.6,122.5,125.1,128.1,128.3$, 128.4, 128.5, $128.6(\mathrm{CH} \times 2), 132.8,135.7,136.4,145.4,148.9$, 154.2, 155.1, 161.1, due to overlap (quarternary $\mathrm{C} \times 2$), not all carbons resonances were visible; IR (KBr) 3300, 1730, 1580, 1520, $1450 \mathrm{~cm}^{-1}$; MS m/z $686\left(\mathrm{M}^{+}+4\right)$, $684\left(\mathrm{M}^{+}+2\right)$, 682 $\left(\mathrm{M}^{+}\right)$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}_{2}{ }^{81} \mathrm{Br}_{2}$ 685.9891, found 685.9889, calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}_{2}{ }^{81} \mathrm{Br}^{79} \mathrm{Br}$ 683.9930, found 683.9938, calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{~N}_{2}{ }^{79} \mathrm{Br}_{2}$ 681.9950, found 681.9940. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Br}_{2}$: C, 52.65; H, 3.53; $\mathrm{N}, 4.09$. Found: C, 52.65; H, 3.75; N, 4.04.
(1S,8R,9R,10R)-1-Methyl-8-phenyl-1-decalyl 2-[(Benz-yloxy)imino]-3-[2-(benzyloxy)-3,5-dibromo-4-methoxyphenyl]propionate (14). Under argon atmosphere, to a solution of optically active tertiary alcohol $\mathbf{3}(1.6 \mathrm{~g}, 6.6 \mathrm{mmol})$ in toluene (30 mL) was added a solution of MeLi in $\mathrm{Et}_{2} \mathrm{O}$ (6.7 $\mathrm{mL}, 6.63 \mathrm{mmol}, 0.99 \mathrm{M}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . Then HMPA ($3.5 \mathrm{~mL}, 19.8 \mathrm{mmol}$) was added at 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred at rt for 30 min and heated at $80^{\circ} \mathrm{C}$ for 3 h . The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and added to a solution of nitrophenyl ester $\mathbf{1 3}(4.5 \mathrm{~g}, 6.6 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at rt for 5 h . After addition of water at $0^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$. The organic extracts were washed with saturated NaHCO_{3} and saturated NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography (benzene) to afford 1.9 g of 14 along with 0.9 g of recovered alcohol 3 . The recovered alcohol was resubjected to the same reaction to afford additional 14 as an oil (4.4 g , total 85%): $[\alpha]^{32} \mathrm{D}+44.8$ (c, 1.17, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.05-1.75(12 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{s}), 2.18-$ $2.29(1 \mathrm{H}, \mathrm{m}), 2.40-2.50(1 \mathrm{H}, \mathrm{m}), 2.56-2.63(1 \mathrm{H}, \mathrm{m}), 3.84(3 \mathrm{H}$, s), 2.87, 3.42 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.5 \mathrm{~Hz}$), $4.83,4.85$ (each $1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=10.9 \mathrm{~Hz}$), $5.12,5.17$ (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}$), $6.8-7.52$ (16H, m); ${ }^{13} \mathrm{C}$ NMR $\delta 20.8,22.8,25.4,26.3,33.9,34.6,36.9$, $37.5,40.5,46.4,50.5,60.6,74.4,77.5,89.0,112.6,114.2,125.1$, $127.6,127.8,127.9,128.1,128.2,128.4,129.3,131.5,136.7$ (С $\times 2$), 146.8, 150.6, 153.4, 154.1, 161.0, due to overlap (CH \times 2), not all carbons resonances were visible; IR $\left(\mathrm{CHCl}_{3}\right) 3320$, 2900, 1710, 1600, 1460, $1420 \mathrm{~cm}^{-1}$; MS (EI +) m/ z 791 (M ${ }^{+}+$ 4), $789\left(\mathrm{M}^{+}+2\right), 787\left(\mathrm{M}^{+}\right)$; $\mathrm{MS}(\mathrm{FAB}+) \mathrm{m} / \mathrm{z} 790\left(\mathrm{M}^{+}+4-\right.$ H), $788\left(\mathrm{M}^{+}+2-\mathrm{H}\right), 786\left(\mathrm{M}^{+}-\mathrm{H}\right)$; HRMS (FAB+) calcd for $\mathrm{C}_{41} \mathrm{H}_{42} \mathrm{NO}_{5}{ }^{81} \mathrm{Br}_{2} 790.1389$, found 790.1381, calcd for $\mathrm{C}_{41} \mathrm{H}_{42^{-}}$ $\mathrm{NO}_{5}{ }^{79} \mathrm{Br}_{2}$ 786.1430, found 786.1433.
(1S,8R,9R,10R)-1-Methyl-8-phenyl-1-decalyl 2-(Hydroxy-imino)-3-(2-hydroxy-3,5-dibromo-4-methoxyphenyl)propionate (1c). A solution of benzyl ether $\mathbf{1 4}(4.4 \mathrm{~g}, 5.58 \mathrm{mmol})$ in AcOH (40 mL) and dioxane (40 mL) was hydrogenated over Pd-black (960 mg) under H_{2} at rt for 7 h . After filtration, the filtrate was basified with saturated NaHCO_{3} and then extracted with AcOEt $(200 \mathrm{~mL} \times 3)$. The organic extracts were washed with saturated NaCl and dried over MgSO_{4}. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}=20: 1$) to afford $\mathbf{1 c}(3.1 \mathrm{~g}, 91 \%)$ as an oil: $[\alpha]^{30}{ }_{\mathrm{D}}+38.1$ (c, 1.13, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 1.05-1.77(12 \mathrm{H}, \mathrm{m}), 1.56(3 \mathrm{H}, \mathrm{s})$, 2.49-2.69 ($2 \mathrm{H}, \mathrm{m}$), 2.72-2.76 (1H, m), 3.29, 3.48 (each 1H, d, $\mathrm{J}=13.9 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 6.82-7.4(6 \mathrm{H}, \mathrm{m}), 8.48(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.3,23.0,25.2,26.2,33.9,34.5,37.1\left(\mathrm{CH}_{2} \times 2\right), 40.7$, $46.0,50.4,60.5,91.8,107.1,108.0,119.6,125.3,127.5,128.2$, $134.2,146.7,148.3,152.5,154.1,163.2$; IR (CHCl_{3}) 3350, 2930, 1720, 1670, 1460, $1410 \mathrm{~cm}^{-1}$; MS (FAB+) m/ z $612\left(\mathrm{M}^{+}+4+\right.$ H), $610\left(\mathrm{M}^{+}+2+\mathrm{H}\right), 608\left(\mathrm{M}^{+}+\mathrm{H}\right)$; HRMS (FAB+) calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{5}{ }^{81} \mathrm{Br}_{2}$ 612.0606, found 612.0635, calcd for $\mathrm{C}_{27} \mathrm{H}_{32}$ $\mathrm{NO}_{5}{ }^{32} \mathrm{Br}^{79} \mathrm{Br}$ 610.0627, found 610.0641, calcd for $\mathrm{C}_{27} \mathrm{H}_{32^{-}}$ $\mathrm{NO}_{5}{ }^{79} \mathrm{Br}_{2}$ 608.0648, found 608.0626.

Oxidative Cyclization of $\mathbf{1 c}$. CSA $(1.28 \mathrm{~g}, 5.5 \mathrm{mmol})$ was added to a suspension of PhIO ($1.22 \mathrm{~g}, 5.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(60 \mathrm{~mL})$ at rt , and the mixure was stirred for 2 h . The resulting clear solution was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of o-phenolic oxime-ester $\mathbf{1 c}(3.06 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added to the sol ution above, and the mixure was warmed to $0^{\circ} \mathrm{C}$. After addition of water, the mixture was stirred at rt for 30 min . Extractive workup followed by column chromatography (benzene) afforded spirocydohexadienone isoxazol ine 2c ($2.53 \mathrm{~g}, 83 \%$). The de ($70-80 \%$) was estimated on the basis of methylene proton signals of the isoxazoline ring in the 500 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum.
(1S,8R,9R ,10R)-1-Methyl-8-phenyl-1-decalyl 7,9-dibro-mo-8-methoxy-6-oxo-1-oxa-2-azaspiro[4.5]deca-2,7,9-triene-3-carboxylate (2c): $500 \mathrm{MHz}{ }^{1 \mathrm{H}}$ NMR $\delta 1.46$ (3H, s), 1.21$1.80(12 \mathrm{H}, \mathrm{m}), 2.10-2.94(3 \mathrm{H}, \mathrm{m}), 2.17$ (major product) (1 H , $\mathrm{d}, \mathrm{J}=17.6 \mathrm{~Hz}$), 3.00 (major product) ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.6 \mathrm{~Hz}$), 2.72 (minor product) ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.7 \mathrm{~Hz}$), 2.86 (minor product) ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.7 \mathrm{~Hz}$), 4.15 ($3 \mathrm{H}, \mathrm{s}$), 6.65 (major product) (1 H , s), 6.66 (minor product) ($1 \mathrm{H}, \mathrm{s}$), $7.1-7.3(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR (major product) $\delta 21.2,22.9,26.3,33.8,34.5,37.1,37.7,40.7$, $44.4,46.5,49.6,62.0,86.7,90.4,107.2,119.1,125.6,127.8$, 128.4, 137.1, 147.3, 150.9, 157.2, 163.1, 188.9; IR (CHCl_{3}) 3370, 2590, 1710, 1600, 1580, 1550, $1450 \mathrm{~cm}^{-1}$; MS (FAB-) m/ z 609 $\left(\mathrm{M}^{-}+4\right), 607\left(\mathrm{M}^{-}+2\right), 605\left(\mathrm{M}^{-}\right)$; HRMS (FAB-) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5}{ }^{81} \mathrm{Br}^{79} \mathrm{Br} 607.0392$, found 607.0362 .

Synthesis of (5S)-Methyl 7,9-Dibromo-8-methoxy-6-oxo-1-oxa-2-azaspiro[4.5]deca-2,7,9-triene-3-carboxylate [(-)-2a]. To a solution of $\mathbf{2 c}(2.1 \mathrm{~g}, 3.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was added TFA (15 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at rt for 1 h . The solvent was removed under reduced pressure, and the resulting rersidue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL). To this solution was added MeOH ($179 \mathrm{mg}, 5.6$ mmol), DCC ($1.21 \mathrm{~g}, 5.9 \mathrm{mmol}$), and DMAP ($68 \mathrm{mg}, 0.56 \mathrm{mmol}$) in this order. The mixture was stirred at rt for 30 min . After filtration, the solvent was removed under reduced pressure, and the crude product was purified by column chromatography (benzene) to afford (-)-2a (racemic 2a29) in 74\% ee (970.4 mg , 71%). The ee was determined by HPLC analysis (hexane: $\mathrm{EtOH}=9: 1$) using chiralcel-OA (DAICEL): $[\alpha]^{29}{ }_{\mathrm{D}}-56.4$ (c, 1.0, benzene); ${ }^{\mathrm{H}} \mathrm{NMR} \delta 3.31,3.61$ (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.8 \mathrm{~Hz}$), $3.91(3 \mathrm{H}, \mathrm{s}), 4.18(3 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 44.4,53.2$,
62.2, 86.9, 106.7, 120.9, 136.0, 150.0, 159.7, 163.2, 188.7; IR $\left(\mathrm{CHCl}_{3}\right) 1720,1675,1595,1540,1440 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 397\left(\mathrm{M}^{+}\right.$ $+4), 395\left(\mathrm{M}^{+}+2\right), 393\left(\mathrm{M}^{+}\right)$.
(5S,6R)-Methyl 7,9-Dibromo-6-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,7,9-triene-3-carboxylate [(+)15]. Compound (+)-15 was prepared from (-)-2a (84\% ee) according to Yamamura's method:29 $[\alpha]^{28} \mathrm{D}+181$ (c, 0.86, benzene); ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 3.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.2 \mathrm{~Hz}$), 3.73, 3.83 (each $3 \mathrm{H}, \mathrm{s}$), 3.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.2 \mathrm{~Hz}$), 4.22, 5.43 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$), $6.52(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) δ 39.8, 52.8, 60.2, 75.1, 92.4, 113.8, 122.1, 132.0, 148.7, 152.4, 161.1; IR $\left(\mathrm{CHCl}_{3}\right) 3400,2930,1720,1580,1440 \mathrm{~cm}^{-1}$; MS m/ z $399\left(M^{+}+4\right), 397\left(M^{+}+2\right), 395\left(M^{+}\right)$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{11^{-}}$ $\mathrm{NO}_{5}^{81} \mathrm{Br}_{2} 398.8963$, found 398.8955 , calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5}{ }^{81} \mathrm{Br}^{79} \mathrm{Br}$ 396.8983, found 396.8961, cal cd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{5}{ }^{79} \mathrm{Br}_{2}$ 394.9004, found 394.8992 .
(+)-Aerothionin. (+)-Aerothionin was synthesized from $(+)-15$ according to Yamamura's method:29 ${ }^{29}[]^{28} \mathrm{D}+166$ (c, 0.26, MeOH); lit. $\mathrm{I}^{12}[\alpha]_{\mathrm{D}}+210(\mathrm{c}, 1.7, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}$) $\delta 1.62(4 \mathrm{H}, \mathrm{m}), 3.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.2 \mathrm{~Hz}), 3.30-3.45(4 \mathrm{H}, \mathrm{m})$, $3.73(6 \mathrm{H}, \mathrm{s}), 3.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.2 \mathrm{~Hz}), 4.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4$ $\mathrm{Hz}), 5.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{OH}), 6.52(2 \mathrm{H}, \mathrm{s}), 7.65(2 \mathrm{H}, \mathrm{m}$, NH); ${ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $\delta 27.4,39.5,40.2,60.2,75.2,91.5$, 113.8, 122.0, 132.3, 148.7, 155.3, 160.0; IR (CHCl_{3}) 3350, 1660, 1600, 1580, 1530, $1100 \mathrm{~cm}^{-1}$; MS (FAB+) m/ z $819\left(\mathrm{M}^{+}+4+\right.$ H), $815\left(M^{+}+H\right)$; HRMS (FAB +) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{4}{ }^{-}$ $\mathrm{O}_{8}{ }^{81} \mathrm{Br}_{2}{ }^{79} \mathrm{Br}_{2} 818.8521$, found 818.8496, calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{4}-$ $\mathrm{O}_{8}{ }^{79} \mathrm{Br}_{4} 814.8562$, found 814.8536 .

Acknowledgment. We are grateful to Dr. T. Nakata and Dr T. Suenaga (RIKEN) for the circular dichroism measurements.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds and HPLC chromatograms of (-)-2a using a chiral column (18 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O970082I

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, J une 1, 1997.
 (1) (a) Aerothionin, homoaerothionin: Moody, K.; Thomson, R. H.; Fattorusso, E.; Minale, L.; Sodano, G. J . Chem. Soc., Perkin Trans. 1 1972, 18. (b) Aerophobin-1: Cimino, G.; De Rosa, S.; De Stefano, S.; Self, R.; Sodano, G. Tetrahedron Lett. 1983, 24, 3029. (c) Recent reports on other natural marine products: Gopichand, Y.; Schmitz, F. J. Tetrahedron Lett. 1979, 3921. Nakamura, H.; Wu, H.; K obayashi, J . Tetrahedron Lett. 1985, 26, 4517. Morris, S. A.; Andersen, R. J. Can. J . Chem. 1989, 67, 677. Longeon, A.; Guyot, M.; Vacelet, J. Experientia 1990, 46, 548. Kernan, M. R.; Cambie, R. C.; Bergquist, P. R. J . Nat. Prod. 1990, 53, 615. Gunasekera, S. P.; Cross, S. S. J . Nat. Prod. 1992, 55, 509. König, G. M.; Wright, A. D. Heterocycles 1993, 36, 1351. Mancini, I.; Guella, G.; Laboute, P.; Debitus, C.; Pietra, F. J . Chem. Soc., Perkin Trans. 1 1993, 3121.
 (2) (a) Forrester, A. R.; Thomson, R. H.; Woo, S.-O. J. Chem. Soc., Chem. Commun. 1973, 604. (b) Forrester, A. R.; Thomson, R. H.; Woo, S.-O. J. Chem. Soc., Perkin Trans. 1 1975, 2340. (c) Forrester, A. R.; Thomson, R. H.; Woo, S.-O. J. Chem. Soc., Perkin Trans. 1 1975, 2348. (d) F orrester, A. R.; Thomson, R. H.; Woo, S.-O. J ustus Liebigs Ann. Chem. 1978, 66. (e) Noda, H.; Niwa, M.; Yamamura, S. Tetrahedron Lett. 1981, 22, 3247. (f) Nishiyama, S.; Yamamura, S. Tetrahedron Lett. 1982, 23, 1281. (g) Nishiyama, S.; Yamamura, S. Tetrahedron Lett. 1983, 24, 3351; Nishiyama, S.; Yamamura, S. Bull. Chem. Soc. J pn. 1985, 58, 3453. (h) Kaçan, M.; Koyuncu, D.; McKillop, A. J. Chem. Soc., Perkin Trans. 1 1993, 1771. (i) Murakata, M.; Yamada, K.; Hoshino, O. J. Chem. Soc., Chem. Commun. 1994, 443. (j) Murakata, M.; Yamada, K.; Hoshino, O. Tetrahedron 1996, 47, 14713.
 (3) As to their absolute configuration, only (+)-aerothionin has been determined by its X ray crystallographic analysis; see, ref 12.

[^1]: (4) Biomimetic synthesis of aerothionin, see: Okamoto, K. T.; Clardy, J. Tetrahedron Lett. 1987, 28, 4969.
 (5) The cleavage of cyclohexyl esters by TfOH has been reported: Tam, J. P.; Wong, T.-Wai; Riemen, M. W.; Tjoeng, F.-S.; Merrifield, R. B. Tetrahedron Lett. 1979, 4033.

[^2]: (6) J ung, M. E.; Lyster, M. A. J. Am. Chem. Soc. 1977, 99, 968.
 (7) Mata, E. G.; M ascaretti, O. A. Tetrahedron Lett. 1988, 29, 6893.
 (8) For example, decomposition of the cyclohexadienone spiroisoxazoline with pyridine has been reported; see, ref 2d.

[^3]: (9) The racemic bicyclic secondary alcohol as a chiral auxiliary has been reported: Whitesell, J. K.; Lawrence, R. M.; Chen, H.-H. J. Org. Chem. 1986, 51, 4779.
 (10) Cf. F or circular dichroism spectrum of (8S,9R,10S)-(+)-8-methyl-trans-1-decal one: Hagishita, S.; Kuriyama, K. J . Chem. Soc., Perkin Trans. 1 1980, 950.

[^4]: (11) The ee of $\mathbf{2 a}$ could be increased by recrystallization from MeOH - petroleum ether. Methyl esters 2a having 84\% ee were obtained from the mother liquid.
 (12) For the optical rotation $\left\{[\alpha]_{\mathrm{D}}+210\right.$ (c 1.7, MeOH) $\}$ and the absolute configuration (S-configuration) of (+)-aerothionin, see: McMillan J. A.; Paul, I. C.; Goo, Y. M.; Rinehart, J r., K. L.; Krueger, W. C.; Pschigoda, L. M. Tetrahedron Lett. 1981, 22, 39.

